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The syndeoxypolypropionate motif is a ubiquitous structure Table 1. Catalyst and Ligand Optimization
within nature. Numerous iterative methods exist for its construction, 0._0.__0 5131%13?{1] o) (o}
mainly involving stereoselective enolate alkylations and conjugate U — o Me)J\/\/U\OH
Me Me

MeyZn, THF : :
additions in the presence of a chiral auxilidiylore recent methods Me Me
include Burgess’ enantioselective hydrogenation of polyene sys- 1 2a
temg and Negishi’s sequential carboalumination/vinylation proto-  _Entry [Rh] L T/°C Yield (%) ee (%)
cols? The enantioselective monoalkylation wfese3,5-dimethyl 1 [RNCOD)Cl;  MONOPHOS3a 40 4 15
glutaric anhydridel would provide a unique and rapid entry into g {i:iggg;g:}z TA?_'}ZS;':;:(N;? 3b :g g‘;’ 7'2
syndeoxypolypropionate systems such2a&q 1). We and others 4 [Rh(COD)C”z +-Bu-PHOX 3d 40 64 79
have previously reported catalytic anhydride activafidias well 5 [Rh(nbd)CI], t-Bu-PHOX 3d 40 97 80
as asymmetric $p-sp? cross-coupling§.Dimethyl glutaric anhy- 6 [Rh(nbd)ClJ £.Bu-PHOX 3d 25 90 86
dride 1 is readily available in molar quantitiésand while the
enantioselective desymmetrization with heteroatom nucleophiles is OO o Ph Pho PPh,
well-established, no general methods for direct enantioselective iP-NMez ><O';C; P-NMe, /N:rR
carbon-carbon bond formation is knowhHerein we report a O o Oph P?‘ o]
rhodium-catalyzed enantioselective alkylative desymmetrization of i-Pr-PHOX, 3¢
1 with in situ prepared carbon nucleophiles to generate a series of ~ MONOPHOS 3a TADDOL-P-NMe; 3b #Bu-PHOX,3d
syndeoxypolypropionate synthons. Scheme 1. Commercial Diorganozinc Nucleophile Scope
Oy _0O._0 9 o] o]
© © ° R/\ M R \)OJ\/\)CL (1) U 2.2 rr:gllcyf tl_RBTJ(_l;b:gg(l]z )l\/\/u\
U ---------- - <" 0H N RoZn, THF, 25 °C R Y Y OH
Me*" ‘Me Catalyst l\:/le I\:Ae Me Me Me Me
1 _ 2
1 2 Me,Zn Et;Zn 5 PhyZn
2a 87%, 86%ee 2b 95%, 95%ee i 2¢ 76%, 56% ee
We discovered that Rh(I) sources efficiently catalyze the addition i-PryZn 5 75%, 82% ee
of dimethyl zinc to 3,5-dimethyl glutaric anhydride Through <20% ! [with TADDOL-P-NMe; |

optimization studies (Table 1 and Supporting Information), we
identified phosphinooxazoline ligands (PHOXgs the optimal
scaffold withtert-butyl PHOX3d in the presence of [Rh(nbd)Gl]

at 25°C providing the best resulig:.3

electronics of the benzylic nucleophile and the ee is observed:
electron-rich benzylic zinc reagents, such agjinprovide lower
enantioselectivities due to an uncatalyzed background reaction.

Th f il ilable dimethvl and diethv zi Other 3,5-disubstituted glutaric anhydriéfeare also competent
€ use of commercially avaiiable dimetnyl and diethyl zinc partners in this chemistry. For example, bicyclic anhydritle

rc_ealgents ;IIows tt_he (Ijestyrj:_rnetr{/zvitlon“tqo prtoc_ee(ill with excl;a IIendt provides produch in 85% ee, while bisacetate anhydri@affords
yields and enantioselectivities. en the sterically encumbered | . 47 in 849% ee (egs 2 and 3.

i-Pr,Zn is used, only trace amount of product is observed. The

enantioselectivity is dramatically reduced whenZhis used under o Cl’ 2.5 mol% [Rh(bAICl O w9
these conditions. In this case, the Rh/TADDER—NMe, systeni® @1 i t[—Bu(—rI;HC))X]z (“\U/H\OH @
provides products of higher ee possibly indicating a change in “EtpZn, THF, 25 °C, 5h Me
mechanism between $pnd s nucleophiles. In situ prepared aryl 4 5 87% Yield, 85%ee
nucleophiles are not compatible. 2.5 mol% [Rh(nbd)Cl], o o

With the intent of expanding this reaction to accommodate more On-O~° 5 mol% t-Bu-PHOX oan @
diverse nucleophiles, we began to examine the use of in situ AcO U,/OAC EtzZn, T'::éfs 5 e \ \ '
prepargd organozinc reageh‘tsThese.condltlons proyed fully 6 BnOH, DCC, DMAP 7 ss%Yi(:T:Jc, 8%;9
compatible with a wide range of alkyl zinc reagents easily prepared
from their Grignard reager#sor via other protocol$ (Table 2). The use of a zinc homoenolate produces keto bis2stgr good
The reaction is tolerant of a wide range of functionality. Alkyl yield and excellent enantioselectivity. The use of this nucleophile
substituents are well-suited affording compouris—2f. The is complicated with formation of a significant byproduct arising

enantioselectivity is augmented (885% ee) when in situ generated  from isomerization of the homoenolate to the corresponding enolate
MeZnBr is used (Scheme 1 vs Table 2). Esters and alkyl chlorides (eq 4). The amount of this byproduct may be reduced if the reaction
are well-tolerated in this reaction to provide functionalized products is conducted at higher concentrations, a finding that strongly
2g and2h. Benzylic nucleophiles are excellent coupling partners, suggests that initial interaction occurs between the nucleophile and
providing compound&i—2m. An apparent correlation between the  Rh, prior to addition to anhydride (eq 5). At lower concentrations,
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Table 2. In Situ Generated Nucleophiles Scope
0. 0. .0 5 mol% Rh(nbd)Cl], o 0
10 mol% t-Bu-PHOX
> 1.7 eq RZnX R Y "OH
Me' Me v
THF, 50 °C Me Me
o] 0 o] 0
Me)l\:/\:/U\OMe CI/W\)J\:/\:/U\OMe
Me Me Me Me
2a? 85%, 95% ee 2h2bC 76%, 94% ee
i i ©\)J\/\/lL
ve L,
Me Me Me Me
2b? 80%, 94% ee 2i? 87%, 90% ee
e O,
Me Y Y OH
Me |\7Ie Me Me
2d 62%, 88% ee 2§ 75%, 85% ee
M
Me\/\)J\/\/u\
Ty OH <" OMe
Me Me Me Me
2e 70%, 90% ee 2k? 74%, 88% ee
o (0]
PhWOMe
Me Me Me Me
2f% 62%, 92% ee 212 78%, 91% ee
PPN
AcO/\/\)J\:/\:/U\OMe <" 0OMe
Me Me Me Me

292P° 66%, 89% ee 2m? 68%, 91% ee

aTreated with TMSCHM. P Reaction performed at 2%C. ¢ RyZn was
used.

the unimolecular isomerization reaction is competitive with the
second order addition to anhydride. It is also worth noting that other
ligands, includingi-Pr-PHOX 3¢, lead to exclusive formation of
the isomerized produ@o, suggesting that the steric bulk associated
with t-Bu-PHOX is responsible for inhibiting this isomerization
reaction. Compoun@n can be further elaborated through a two-
step deoxygenation protoédlto afford bisester8 (eq 6), a
potentially useful synthon in polypropionate synthesis.

[Rh(nbd)Cl], o
t-Bu-PHOX /\)j\/\/
| LB, e A comnzon I~ coen
then BnOH Me Me Me Me Me
DCC, DMAP on 2
at0.3m 78%, 95% ee trace
at0.15 M 49% 30%
k k;
o e Rh~CO2Et 2, Rh _COEt___, 20 (5
1 h
Me
(e}
1) TsNHNH
EtOZC/\)J\:/\:/COZBn 2—>) NaBH C; Et OZC/\/\/\/COZ?Q)
Me Me ) NaBHy Me Me
2n TsOH 8, 65% over 2 steps

Ketoacid 2b undergoes a diastereoselective reduction with
LiBHEts;, which upon acidic workup affords lactor@?° This
compound is an intermediate in Mori’'s synthesis of beetle
pheromonel0 which was prepared in 12 steps from dimethyl
glutaric anhydridel,2* allowing for the synthesis 010 in 57%
overall yield and three steps (eq 7).

In conclusion, we have developed a highly enantioselective
alkylative desymmetrization of 3,5-substituteteseglutaric an-

LBHE Ref 21,
BHEt; Me 1 ste \)\/\/U\
then H;0* . —=% Me Me (7)
3 Me" “Me  70% Me Me
9 98%, 87:13 dr 10

hydrides, providing rapid access into substitusgddeoxypolypro-
pionate fragments in a single transformation.
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